본문 바로가기
4. 그래프 꾸미기(저수준 함수)/수학 기호 넣기

[R] 그래프에 루트, 시그마, 인테그랄, 첨자 등 다양한 기호 넣기

by makhimh 2019. 11. 30.
반응형

[R] 그래프에 루트, 시그마, 인테그랄, 첨자 등 다양한 기호 넣기


R에서 제공하는 수학적인 주석(annotation)입니다. 수학 기호의 표기규약 이라고 생각하시면 됩니다. 아래와 같은 규약으로 expression함수에 넣으면, 그래프에 title이나 text로 출력 시 기호로 출력됩니다. 개수가 많기 때문에 몇가지 예만 들겠습니다. 


plot.new(); 

plot.window(c(0,4), c(0,4))

box(lty = '1373', col = 'red')


text(2, 4, expression(x %+-% y)) 

text(2, 3, expression(x==y))

text(2, 2, expression(sqrt(x)))

text(2, 1, expression(integral(f(x)*dx, a, b)))

text(2, 0, expression(omega))


Mathematical Annotation in R


파란색이 표현방법, 검정색이 설명입니다. 


x + y x plus y

x - y x minus y

x*y juxtapose x and y

x/y x forwardslash y

x %+-% y x plus or minus y

x %/% y x divided by y

x %*% y x times y

x %.% y x cdot y

x[i] x subscript i

x^2 x superscript 2

paste(x, y, z) juxtapose x, y, and z

sqrt(x) square root of x

sqrt(x, y) yth root of x

x == y x equals y

x != y x is not equal to y

x < y x is less than y

x <= y x is less than or equal to y

x > y x is greater than y

x >= y x is greater than or equal to y

!x not x

x %~~% y x is approximately equal to y

x %=~% y x and y are congruent

x %==% y x is defined as y

x %prop% y x is proportional to y

x %~% y x is distributed as y

plain(x) draw x in normal font

bold(x) draw x in bold font

italic(x) draw x in italic font

bolditalic(x) draw x in bolditalic font

symbol(x) draw x in symbol font

list(x, y, z) comma-separated list

... ellipsis (height varies)

cdots ellipsis (vertically centred)

ldots ellipsis (at baseline)

x %subset% y x is a proper subset of y

x %subseteq% y x is a subset of y

x %notsubset% y x is not a subset of y

x %supset% y x is a proper superset of y

x %supseteq% y x is a superset of y

x %in% y x is an element of y

x %notin% y x is not an element of y

hat(x) x with a circumflex

tilde(x) x with a tilde

dot(x) x with a dot

ring(x) x with a ring

bar(xy) xy with bar

widehat(xy) xy with a wide circumflex

widetilde(xy) xy with a wide tilde

x %<->% y x double-arrow y

x %->% y x right-arrow y

x %<-% y x left-arrow y

x %up% y x up-arrow y

x %down% y x down-arrow y

x %<=>% y x is equivalent to y

x %=>% y x implies y

x %<=% y y implies x

x %dblup% y x double-up-arrow y

x %dbldown% y x double-down-arrow y

alpha -- omega Greek symbols

Alpha -- Omega uppercase Greek symbols

theta1, phi1, sigma1, omega1 cursive Greek symbols

Upsilon1 capital upsilon with hook

aleph first letter of Hebrew alphabet

infinity infinity symbol

partialdiff partial differential symbol

nabla nabla, gradient symbol

32*degree 32 degrees

60*minute 60 minutes of angle

30*second 30 seconds of angle

displaystyle(x) draw x in normal size (extra spacing)

textstyle(x) draw x in normal size

scriptstyle(x) draw x in small size

scriptscriptstyle(x) draw x in very small size

underline(x) draw x underlined

x ~~ y put extra space between x and y

x + phantom(0) + y leave gap for "0", but don't draw it

x + over(1, phantom(0)) leave vertical gap for "0" (don't draw)

frac(x, y) x over y

over(x, y) x over y

atop(x, y) x over y (no horizontal bar)

sum(x[i], i==1, n) sum x[i] for i equals 1 to n

prod(plain(P)(X==x), x) product of P(X=x) for all values of x

integral(f(x)*dx, a, b) definite integral of f(x) wrt x

union(A[i], i==1, n) union of A[i] for i equals 1 to n

intersect(A[i], i==1, n) intersection of A[i]

lim(f(x), x %->% 0) limit of f(x) as x tends to 0

min(g(x), x > 0) minimum of g(x) for x greater than 0

inf(S) infimum of S

sup(S) supremum of S

x^y + z normal operator precedence

x^(y + z) visible grouping of operands

x^{y + z} invisible grouping of operands

group("(",list(a, b),"]") specify left and right delimiters

bgroup("(",atop(x,y),")") use scalable delimiters

group(lceil, x, rceil) special delimiters

group(lfloor, x, rfloor) special delimiters

반응형

댓글